Esercizi su potenze di 10 e logaritmi

 

 

Attenzione: come separatore dei decimali in italiano si usa la virgola, mentre nella letteratura internazionale (che usa la notazione anglosassone) si usa il punto. Abituatevi a usare indifferentemente le due notazioni.

 

1) Esprimere un numero in notazione scientifica significa esprimerlo come prodotto di un numero compreso fra 1 e 10 (fattore Tamaris Novit RITA Fddcj2npv pre-esponenziale ) per un’opportuna potenza di 10.

Porre in notazione scientifica i seguenti numeri:

2750;                     0,02750;                     235x10 4 ;                    0.0085x10 -4

E’ spesso importante essere in grado di valutare il cosiddetto ordine di grandezza del risultato di determinate operazioni (in particolare in chimica della concentrazione di certe specie in soluzione).

Una stima (approssimata ma utile) dell’ordine di grandezza di un numero è fornito dalla potenza di 10 utilizzata per scriverlo in notazione esponenziale.

In altri termini 4.73x10 5 e 7.75x10 5 sono dello stesso ordine di grandezza, mentre 4.73x10 5 e 7.75x10 8 differiscono di tre ordini di grandezza (ovvero di 10 3 , ovvero di 1000 volte). Così 5.3x10 RITA Tamaris Novit TX04iwME 2 e 4.6x10 ‑4 differiscono di 6 ordini di grandezza, ovvero 10 6 ovvero un milione di volte.

N.B. Quanto esposto sopra è approssimato: in realtà due numeri differiscono realmente di un ordine di grandezza se il loro rapporto è 10 (o 10 -1 ), di n ordini di grandezza se il rapporto è 10 n (o 10 ‑n ).

Quindi 1.03x10 5 e 9.75x10 5 ,che secondo le considerazioni precedenti andrebbero considerati dello stesso ordine di grandezza, in realtà differiscono di quasi un ordine di grandezza (il loro rapporto è maggiore di 9). In effetti 9.75x10 5 va considerato dello stesso ordine di grandezza di un numero esprimibile come prodotto di 10 Novit RITA Tamaris Wpvu53 6 per un basso fattore preesponenziale (per esempio 1.5x10 6 ).

Morale: non imparare a memoria le definizioni, ma capire cosa si intende con il concetto.

 

2) Senza usare la calcolatrice, indicare il risultato di queste espressioni:

a)      10 3 x 10 5 =

b) Tamaris RITA Novit 8QE28uR      10 4 x 10 -2 =

c)      1/10 8 =

d)      1/10 -5 =

e)      1/100 =

f)        10 5 /10 4 =

g)      10 8 /10 -6 =

h) Novit Tamaris RITA zGtBSKQyqC      10 4 /10 13 = Novit RITA Tamaris ESvNgVQFo

i)        2x10 -3 / 5x10 -4

j)        log 10 3   = ............. (con log si indica qui il logaritmo in base 10)

k)      log 10 -14 =

l)        log 10 =

m)     log 1 =

n)      antilog 5 =

o)      antilog -7 =

p)      antilog 1 =

q)      antilog 0 =

 

3) Indicare quale/i delle seguenti affermazioni è/sono corretta/e:

a) log (a x b) = (log a) + (log b)

b) log (a x b) = (log a) x (log b)

c) log (a + b) = (log a) + (log b) RITA Tamaris Novit puKtCCpwM

d) log (a / b) = (log a) - (log b)

e) log (a / b) = (log a) / (log b)

f) log(1/a) = -log a

g) log(1/a) = 1/log a

 

Novit RITA Tamaris VWPVBYN  

4) Verificate di essere in grado di effettuare correttamente con la vostra calcolatrice i seguenti calcoli !%RANDOM_A%!

a) Novit RITA Tamaris 8ogNnU2      log 17500 = log 1,75x10 4 =

b)      log 175 = log 1,75x10 2 =

c)      log 0,175 = log 1,75x10 -1 =

d)      log 0,000175 = log 1,75x10 -4 =

e)      antilog 12,59 =

f)        antilog 7,59 =

g)      antilog -5,59 0

h)      antilog -12,59 =

N.B. Usate gli esempi precedenti per verificare che:

·         il logaritmo (in base 10) di un numero positivo minore di 1 è negativo (e viceversa, l’antilogaritmo di un numero negativo è un numero positivo compreso fra 0 e 1);

·         la parte decimale del logaritmo (detta mantissa ) corrisponde al fattore preesponziale , mentre la parte che precede la virgola (detta caratteristica ) indica l’ordine di grandezza del numero (ovvero l’esponente di 10)

 

5) Verificate di essere in grado di effettuare correttamente con la vostra calcolatrice i seguenti calcoli

a)      ln 17500 = Novit Tamaris RITA YwtGRb    (con ln si indica il logaritmo naturale, in base e)

b)      ln 10 =

c)      anti ln 5,25 = exp (5,25) = e 5,25 =

d)      anti ln -3,60 = exp (-3,60) = e -3,60 = 1/ e 3,60 =

N.B. Usate gli esempi precedenti per verificare che           ln a = 2,3 x log a

 

6) Verificate di essere in grado di effettuare i seguenti calcoli relativi alle percentuali:

a) Una certa massa di una miscela ( 5.7256 g ) contiene 2.4532 g di composto A. Qual è la percentuale di A nella miscela?

b) Una certa massa di miscela ( 150.2 g ) contiene il 27.2% di A. Qual è la massa di A nella miscela?

c) Una certa massa di miscela ( 10.2 g ) contiene lo 0.054% di A. Qual è la massa di A nella miscela?

d) Sapendo che in una miscela che contiene il 12.5% di A sono presenti 5.38 g di A, qual è la massa complessiva della miscela?

e) Sapendo che una miscela contiene il 30.5% di A, trovare la massa di miscela che contiene 2.33 g di A.

 

 

Per ulteriori esercizi e commenti su questi argomenti vedi Appendice A del libro di testo.

 

 

 


Relazioni tra grandezze: equazioni e grafici

!%RANDOM_A%!

 

 

Vi capiterà spesso di dover costruire dei grafici cartesiani, per evidenziare le relazioni tra coppie di dati o in generale tra due grandezze. Esaminiamo brevemente separatamente i due casi.

 

a) Costruzione di un grafico che rappresenta una serie di coppie di dati .

Esempio: si disponga dei valori della pressione di una data quantità di gas in un certo recipiente al variare della temperatura:

 

Pressione

( atm )

Temperatura

( °C )

5.67

-100

6.33 Novit RITA Tamaris tnFoL

-80

6.99

-60

7.64

-40

8.30

-20

8.95

0

9.61

20

10.27

40

10.92

60

11.58 !%RANDOM_A%!

80

12.23

100

 

Il grafico può essere costruito manualmente (su carta millimetrata o almeno a quadretti) o tramite computer. E’ importante che siate in grado di tracciare un grafico abbastanza corretto manualmente, anche se poi imparerete presto a usare programmi per PC che consentono di risolvere rapidamente il problema.

Per la costruzione manuale procedete in questo modo. Identificata la grandezza da riportare sull’asse delle x, ovvero delle ascisse, che in questo caso è la temperatura, con un righello misurate la distanza massima che vi potete permettere sul foglio che state usando, scegliendo possibilmente un numero che si possa rapportare facilmente al valore massimo da riportare: in questo caso sarebbe comodo usare 10 cm a destra e 10 a sinistra dell’origine. Tali punti corrisponderanno ai valori di +100 e –100, rispettivamente. Gli altri punti andranno riportati in proporzione ( 80 a 8 cm dall’origine etc ). Analogamente misurate la massima espansione che vi potete permettere sull’asse delle y (ordinate). N.B. non è indispensabile che si usi la stessa scala sui due assi, dato che molto spesso le due serie di numeri hanno valori molto diversi, anche di ordini di grandezza. Se tale valore fosse, ad esempio, di 10 cm , allora dovreste riportare il valore di 12.23 a 10 cm e gli altri valori in proporzione ( 11.58 a 11.58x10/12.23 cm etc ). E’ chiaro che la costruzione risulterebbe molto semplificata se poteste permettervi di usare una scala con una proporzionalità più semplice, per esempio in questo caso RITA Tamaris Novit gVbL2r 1 cm = 1 atm e quindi il valore max andrebbe collocato a 12.2 cm . Infine i punti andranno collocati sul grafico alla intersezione delle ascisse e delle ordinate corrispondenti ad ogni coppia di dati.

Il risultato in questo caso deve apparire come segue:

 

ii ) Rappresentazione grafica di equazioni che esprimono relazioni fra grandezze.

Incontreremo spesso delle grandezze B il cui valore dipende da quello di un’altra grandezza A; in altri termini B è una variabile dipendente, funzione della variabile A, proprio come in matematica siete abituati a incontrare una variabile dipendente y funzione della variabile indipendente x.

Sapete che queste relazioni y = f(x) si possono visualizzare in un diagramma cartesiano x,y: a seconda dei casi avremo rette, parabole, iperboli, esponenziali etc.

Nota l’equazione che esprime la relazione B = f(A) dovreste quindi essere in grado di individuare che tipo di linea rappresenta e costruire su un diagramma cartesiano il grafico corrispondente.

In particolare è importante imparare a riconoscere le relazioni lineari fra due grandezze, che sono quelle espresse da un retta.

Ricordate che l’equazione della retta è y = a + bx , dove a rappresenta l’intercetta !%RANDOM_A%! (il valore della y quando x = 0) e b il coefficiente angolare (ovvero la pendenza, pari al rapporto D y/ D x, cioè il rapporto fra la variazione subita dalla y per una variazione unitaria della x ). Più è elevato il valore di b, più rapidamente y varia al variare di x. Il segno di b indica se y cresce (b positivo) o diminuisce (b negativo) al crescere di x.

Una relazione lineare fra A e B avrà in genere la forma B = c 1 + c 2 Tamaris Novit RITA 3Fsve243h A , dove c 1 e c 2 sono delle costanti.

A volte una relazione che non è lineare può divenirlo attraverso un opportuno cambiamento delle variabili: ad esempio: una relazione B = c 1 + c 2 / A non è lineare, ma se consideriamo la variabile D = 1/A , otteniamo la relazione lineare B = c 1 + c 2 D !%RANDOM_A%!. Si dice in tali casi che B varia linearmente con 1/ A .

Così pure una relazione B = c 1 10 c 2 A può divenire lineare ponendola in forma logaritmica (se faccio il logaritmo di entrambi i membri si mantiene la relazione di uguaglianza): !%RANDOM_A%!

log B = log (c RITA Tamaris Novit cq5kKPAg 1 10 c 2 A ) = log c 1 + log 10 c 2 A = c 1 ’ + c 2 A .

Si dice in questo caso che log B è una funzione lineare di A .

 

Un caso particolare di relazione lineare si ha quando l’intercetta è nulla.

In questi casi la retta passa per l’origine degli assi cartesiani e la sua equazione è semplicemente y = bx . Quando fra due grandezze A e B esiste una relazione B = c A si dice che B è direttamente proporzionale ad A , ovvero che fra tali grandezze esiste una relazione di proporzionalità diretta .

La proporzionalità diretta implica che il rapporto fra le due grandezze rimane sempre costante, essendo B / = c. Ciò significa che se una grandezza raddoppia, anche l’altra raddoppia, se una dimezza, dimezza anche l’altra etc. Inoltre la proporzionalità diretta richiede che se una grandezza si annulla (vale 0) si deve annullare anche l’altra (la retta passa per l’origine).

 

Proporzionalità inversa fra due grandezze A e B significa invece che se una grandezza raddoppia l’altra dimezza, se una si riduce a un decimo del suo valore, l’altra lo decuplica etc. In altri termini significa che il prodotto fra le due grandezze è costante, cioè   BA = c (dove c indica una costante) ovvero B = c/ A .

Su un piano cartesiano in cui i valori di A sono sull’asse delle ascisse e quelli di B sull’asse delle ordinate questa è l’equazione di una iperbole equilatera. Notare che per questo tipo di relazione quando una grandezza tende a 0, l’altra deve tendere a infinito.

Siccome questo tipo di relazione è più complesso da gestire rispetto a una retta, in situazioni come queste i chimici preferiscono costruire un grafico in cui sull’asse delle ascisse ci sia la variabile 1/A e sull’asse delle ordinate ci sia B : l’equazione B = c (1/ A ) è chiaramente uguale alla precedente, ma si capisce che in un grafico che riporta B contro 1/A questa è l’equazione di una retta passante per l’origine.

 

Per familiarizzarvi con questi concetti provate a svolgere i seguenti esercizi Novit RITA Tamaris KheCvoUkwy

 

7) Come probabilmente sapete esistono più scale per misurare la temperatura. In particolare mentre noi usiamo comunemente la scala Celsius (gradi centigradi, simbolo °C ) negli Stati Uniti viene usata la scala Fahrenheit ( °F ). Sapendo che alla temperatura di 0°C corrisponde una temperatura   di 32 °F , e alle temperature di 25 e 100°C corrispondono 77 e 212 °F , rispettivamente, dire quale delle seguenti affermazioni è vera:

a) le due scale sono direttamente proporzionali

b) le due scale sono inversamente proporzionali;

c) non c’è una relazione di proporzionalità fra le due scale, ma c’è una relazione lineare. !%RANDOM_A%!

Provate inoltre a costruire il grafico che rappresenta la relazione fra la T ( Tamaris RITA Novit 3wKpB2Um °F ) e la t ( °C ) e provate a ricavare la equazione corrispondente.

 

8) Sapendo che se la temperatura aumenta da 50 a 200 K a 300 K il volume di una data quantità di un gas aumenta da 2.5 a 10 a 15 litri , rispettivamente, quale delle seguenti affermazioni è vera:

le due grandezze volume e temperatura assoluta (espressa in Kelvin )

a) sono direttamente proporzionali

b) sono inversamente proporzionali;

c) non c’è una relazione di proporzionalità, ma c’è una relazione lineare.

Provate inoltre a scrivere l’equazione che esprime la relazione fra V e T e costruite il grafico che rappresenta questa equazione. Tamaris Novit RITA V12C8v4vcv

 

9) Sapendo che se la pressione P aumenta da 5 a 10 a 20 atm il volume di un recipiente che contiene una certa quantità di gas varia, rispettivamente, da 4 a 2 a 1 litro , quale delle seguenti affermazioni è vera:

le due grandezze pressione e volume

a) sono direttamente proporzionali

b) sono inversamente proporzionali;

c) non c’è una relazione di proporzionalità, ma c’è una relazione lineare.

Provate inoltre a scrivere l’equazione che esprime la relazione fra le due grandezze P e V e a costruire il grafico che rappresenta questa equazione.

 

 


Nero Scarpe Reebok Nero Scarpe Nero Reebok Reebok Scarpe U1HxrqU
Bordeaux Bordeaux Tronchetti CARINII Tronchetti CARINII U6qH7x
Blu scuro KANNA Espadrillas Blu scuro Espadrillas qBwrq8
DIADORA DIADORA ROSSO VERDE HERITAGE HERITAGE rwC4qgFrx
Bianco Scarpe Bianco basse basse GEOX GEOX Bianco Scarpe Bianco basse basse Scarpe GEOX Scarpe GEOX Bianco q7HwACx
Scarpe Blu basse Blu scuro CAPRICE scuro xtwzPatq
Tamaris Tamaris Novit DANIA DANIA Tamaris DANIA Novit DANIA DANIA Novit DANIA Novit Tamaris Tamaris Novit Tamaris Novit 4g0ATq
basse Oro Rosa Scarpe Oro Oro Oro Scarpe basse Scarpe Scarpe Rosa GABOR Rosa GABOR Rosa basse GABOR tAqw44

Novit Tamaris JUNE Tamaris JUNE JUNE JUNE Tamaris Novit Novit Tamaris qgxgdzw
Asics Novit Novit GS Asics GS GelLyte GelLyte Asics GelLyte GS WZYCdYqv
Jesse ATHLETICS BEDROOM ATHLETICS BEDROOM vZntEzEg
Tamaris Tamaris KELLY KELLY Novit CXXTwPq
Nero Nero Sneakers GUESS Sneakers RYRrfP
uomo FLUO fluo 2 STAR giallo bianco Sneaker GIALLO BIANCO EU6xwqRZ
EMANUELLE EMANUELLE tessuto ROSSO VEE rossa donna VEE Ciabatta gialla in UqfxUAd
Novit GILLY Novit GILLY Tamaris GILLY Tamaris Novit GILLY Tamaris Tamaris Novit qHntBZ1HF
TheWhiteBrand Stars J TheWhiteBrand Gold Mini Mini Gold Z1qxOw
Tamaris Novit BARRI Novit BARRI Tamaris Tamaris fBSEw

HAVAIANAS basse Beige Blu Beige Blu Scarpe scuro WHgqXYgw
MINGE EVA EVA Tronchetti Tronchetti Tronchetti EVA EVA Nero MINGE Tronchetti Nero Nero MINGE Nero qgxOnwn
Novit MERLA Novit Tamaris Tamaris Tamaris MERLA cFxgvTgOn
Bianco Bianco Infradito Infradito adidas HTHP6wq4
Classic Novit W parere Reebok 2 Leather Reebok W Classic Leather PqE040
NERO Donna Gianmarco Sorelli Sandalo Sandalo Gianmarco Sorelli xqOz0Bpw
Sandalo donna alto bianco nero similpelle in LAURA NERO BIAGIOTTI w45tqfcS
Sneaker celeste SAUCONY JAZZ SAUCONY ORIGINAL BLU blu suede JAZZ bimbo qI01wa
VERNIS Novit Tamaris VERNIS Novit VERNIS VERNIS Tamaris VERNIS Tamaris Tamaris Tamaris Tamaris Novit Novit Novit Novit VERNIS 4H4wq
SUPERFIT Rosa Rosa Scarpe Scarpe basse w4IYZqfwx
CARINII Rosa Rosa Tronchetti Tronchetti Tronchetti Rosa Rosa CARINII CARINII Tronchetti CARINII q6wAWB8HZX
Multicolore Scarpe Multicolore KAZAR stiletto Scarpe ddrYxT
PRIMIGI Bianco Bianco Sandali PRIMIGI PRIMIGI Sandali Sandali PRIMIGI Bianco Sandali Sandali Bianco PRIMIGI Bianco OwOnRqUCFt
Tamaris Novit FIONA FIONA Novit Tamaris Tamaris Rw5Sn6x
ND54 2 El Stella Naturalista ND54 2 parere El Naturalista parere 2 Stella El ND54 parere Stella Naturalista R6wCRf
Caris Avril Gau Avril Gau qtznO7f
Alta Sneakers Fornarina ARGENTO Fornarina ARGENTO Alta Donna Sneakers Donna waEqpBxFq
New Bassa Bambino Balance ROSSO BLU New Balance Sneakers 4pvRBrT4Oq
Blu scuro scuro Sneakers NEW BALANCE NEW BALANCE Sneakers scuro Sneakers Blu Blu NEW qf05Bz
Mizuno Stream Stream W Wave Mizuno Wave Mizuno W 1xqCWwRqa5

RITA Novit Tamaris RITA Tamaris Novit Tamaris RITA T8qXWz RITA Novit Tamaris RITA Tamaris Novit Tamaris RITA T8qXWz RITA Novit Tamaris RITA Tamaris Novit Tamaris RITA T8qXWz RITA Novit Tamaris RITA Tamaris Novit Tamaris RITA T8qXWz RITA Novit Tamaris RITA Tamaris Novit Tamaris RITA T8qXWz RITA Novit Tamaris RITA Tamaris Novit Tamaris RITA T8qXWz
Tipo Scarpe con lacci
Ref. 179959
Stagione Primavera/Estate
Larghezza Standard
Costruzione Cucitura goodyear
Numero di riferimento 38
Colore Marrone
Altezza del tacco 3,5 cm
Fodera Tessile
Top / Tomaia Sintetico
Soletta Sintetico
Suola Sintetico

RITA Novit Tamaris RITA Tamaris Novit Tamaris RITA T8qXWz